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A Fast and Flexible Statistical Model for Large-Scale Population Genotype
Data: Applications to Inferring Missing Genotypes and Haplotypic Phase
Paul Scheet and Matthew Stephens
Department of Statistics, University of Washington, Seattle

We present a statistical model for patterns of genetic variation in samples of unrelated individuals from natural
populations. This model is based on the idea that, over short regions, haplotypes in a population tend to cluster
into groups of similar haplotypes. To capture the fact that, because of recombination, this clustering tends to be
local in nature, our model allows cluster memberships to change continuously along the chromosome according
to a hidden Markov model. This approach is flexible, allowing for both “block-like” patterns of linkage disequi-
librium (LD) and gradual decline in LD with distance. The resulting model is also fast and, as a result, is practicable
for large data sets (e.g., thousands of individuals typed at hundreds of thousands of markers). We illustrate the
utility of the model by applying it to dense single-nucleotide–polymorphism genotype data for the tasks of imputing
missing genotypes and estimating haplotypic phase. For imputing missing genotypes, methods based on this model
are as accurate or more accurate than existing methods. For haplotype estimation, the point estimates are slightly
less accurate than those from the best existing methods (e.g., for unrelated Centre d’Etude du Polymorphisme
Humain individuals from the HapMap project, switch error was 0.055 for our method vs. 0.051 for PHASE) but
require a small fraction of the computational cost. In addition, we demonstrate that the model accurately reflects
uncertainty in its estimates, in that probabilities computed using the model are approximately well calibrated. The
methods described in this article are implemented in a software package, fastPHASE, which is available from the
Stephens Lab Web site.
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With the advent of cheap, quick, and accurate genotyp-
ing technologies, there is a need for statistical models
that both are capable of capturing the complex patterns
of correlation (i.e., linkage disequilibrium [LD]) that ex-
ist among dense markers in samples from natural pop-
ulations and are computationally tractable for large data
sets. Here, we present such a model and assess its ability
to accurately capture patterns of variation by applying
it to estimate missing genotypes and to infer haplotypic
phase from unphased genotype data.

The model is motivated by the observation that, over
short regions (say, a few kilobases in human genomes),
haplotypes tend to cluster into groups of similar hap-
lotypes. This clustering tends to be local in nature be-
cause, as a result of recombination, those haplotypes that
are closely related to one another and therefore similar
will vary as one moves along a chromosome. To capture
this, we allow the cluster membership of observed hap-
lotypes to change continuously along the genome ac-
cording to a hidden Markov model (HMM). (This idea
has been proposed, independently of our work, by oth-
ers, including Sun et al. [2004], Rastas et al. [2005], and
Kimmel and Shamir [2005a]; see the “Discussion” sec-
tion.) Each cluster can be thought of as (locally) rep-
resenting a common haplotype, or combination of al-

leles, and the HMM assumption for cluster membership
results in each observed haplotype being modeled as a
mosaic of a limited number of common haplotypes (fig.
1). This approach seems more flexible than “block-
based” cluster models, which divide the genome into
blocks (segments of high LD) and allow cluster mem-
bership to change only across block boundaries (e.g.,
Greenspan and Geiger 2004; Kimmel and Shamir
2005b). The hope is that this more flexible assumption
will allow the model to capture complex patterns of LD
that are not well captured by block-based alternatives
while continuing to capture any “block-like” patterns
that are present.

Another model that also aims to flexibly capture pat-
terns of LD is the PAC model of Li and Stephens (2003),
which partially underlies the PHASE software for hap-
lotype inference and estimation of recombination rates
(Stephens et al. 2001; Stephens and Donnelly 2003; Ste-
phens and Scheet 2005). One way to view the model we
present here is as an attempt to combine the computa-
tional convenience of cluster-based models with the flex-
ibility of the PAC model. Indeed, in terms of compu-
tational convenience, our model is substantially more
attractive than the PAC model, both in that computation
increases only linearly with the number of individuals
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Figure 1 Illustration of how our model allows cluster membership to change continuously along a chromosome. Each column represents
a SNP, with the two alleles indicated by open and crossed squares. Successive pairs of rows represent the estimated pair of haplotypes for
successive individuals. Colors represent estimated cluster membership of each allele, which changes as one moves along each haplotype. Locally,
each cluster can be thought of as representing a (common) combination of alleles at tightly linked SNPs, and the figure illustrates how each
haplotype is modeled as a mosaic of these common combinations. The figure was produced by fitting our model to the HapMap data from 60
unrelated CEPH individuals (see the “Results” section) and then taking a single sample of cluster memberships and haplotypes from their
conditional distribution, given the genotype data and parameter estimates (appendix B). For brevity, haplotypes from only 10 individuals are
shown.

(vs. quadratically for the PAC) and in that the model
can be applied directly to unphased genotype data, with
unknown haplotypic phases integrated out analytically
rather than via a time-consuming and tedious-to-imple-
ment Markov chain–Monte Carlo scheme, such as that
used by PHASE.

The price we pay for this computational convenience
is that our model is purely predictive; in common with
the block-based models mentioned above but in contrast
to the PAC model, our model does not attempt to di-
rectly relate observed genetic variation to underlying de-
mographic or evolutionary processes, such as population
size or recombination. As such, it is not directly suited
to drawing inferences about these processes. However,
it is suited to two other applications that we consider
here: inferring unknown (“missing”) genotypes and in-
ferring haplotypes from unphased genotype data. These
two applications are important for at least two reasons.
First, many methods for analyzing population data (e.g.,
methods that aim to draw inferences regarding demo-

graphic and evolutionary processes) struggle to deal with
missing genotypes or unphased data. This may be be-
cause dealing with these factors can create an impractical
computational burden or simply because necessary ad-
ditional computer programming has not been done.
Therefore, applying those methods in practice often in-
volves initially estimating missing genotypes and hap-
lotypes by some other method. Second (as we expand
on in the discussion), the ability to accurately impute
missing genotypes and infer haplotypes has implications
for the development of methods for association-based
mapping of variants involved in common complex dis-
eases. Comparisons with existing approaches for these
applications suggest that our model has something to
offer, in terms of both speed and accuracy.

Material and Methods

Models

To introduce notation and the basic concepts underlying our
model, we begin by describing a simple cluster-based model
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for haplotypes sampled from a population, in which each hap-
lotype is assumed to have arisen from a single cluster. We then
describe a modification to this model that allows cluster mem-
bership to change along each haplotype, to capture the fact
that, although sampled haplotypes exhibit clusterlike patterns,
these patterns tend to be local in nature. Finally, we describe
the extension of this model for haplotype data to unphased
genotype data through the assumption of Hardy-Weinberg
equilibrium (HWE) and a further extension that allows for
certain types of deviation from HWE.

Cluster model for haplotypes.—Suppose we observe n hap-
lotypes, , each comprised of data at M markers.h p (h ,…,h )1 n

Let denote the allele in the ith haplotype at marker m, sohim

that . Throughout, we assume the markers areh p (h ,…,h )i i1 iM

biallelic SNPs, with alleles labeled 0 and 1 (arbitrarily) at each
site, although the model is easily extended to multiallelic
markers.

A simple cluster model for haplotypes can be developed as
follows. Assume that each sampled haplotype originates from
one of K clusters (labeled ). For simplicity, we initially1,…,K
assume K is known, but we will relax this assumption later.
Let denote the (unknown) cluster of origin for , and letz hi i

denote the relative frequency of cluster k, so thata p(z pk i

, where .kFa) p a a p (a ,…,a )k 1 K

We assume that, given the cluster of origin of each haplo-
type, alleles observed at each marker are independent draws
from cluster-specific (and marker-specific) allele frequencies.
Thus, if denotes the frequency of allele 1 in cluster k atvkm

marker m, and v denotes the matrix of these values, then

M

h 1�him im( )p(hFz p k,v) p v 1 � v . (1)�i i km km
mp1

Since the clusters of origin are actually unknown, the proba-
bility of is obtained by summing equation (1) over all pos-hi

sible values of and weighting by their probabilities:zi

K

p(hFa,v) p p(z p kFa)p(hFz p k,v)�i i i i
kp1

MK

h 1�him im( )p a v 1 � v . (2)� �k km km
mp1kp1

Finally, specification of the model for is com-h p (h ,…,h )1 n

pleted by assuming that are independent and iden-h ,…,h1 n

tically distributed from equation (2).
This simple model is essentially a haploid version of a model

that has been widely used to capture the clustering that can
occur among individuals typed at unlinked (or loosely linked)
markers because of population structure in natural populations
(Smouse et al. 1990; Rannala and Mountain 1997; Pritchard
et al. 2000). However, in those applications, the clusters rep-
resent “populations,” whereas here the clusters represent
groups of closely related haplotypes. The idea of using this
model to capture clustering of haplotypes at tightly linked
markers seems to originate with Koivisto et al. (2003), who
used it to model data at tightly linked SNPs within a haplotype
block (see also Kimmel and Shamir 2005b).

The assumption of independence across markers within

clusters may seem slightly counterintuitive in this setting,
where one expects to observe strong dependence among mark-
ers. The following observations may aid intuition. Each cluster
corresponds to a single row of the v matrix, which is a vector
of numbers in the range , with one number per marker.[0,1]
(In fact, we imposed the constraint on the0.01 � v � 0.99km

elements of v, motivated by the idea that this might make the
model more robust to factors such as genotyping error.) For
estimates of v obtained from real data sets that we have ex-
amined, a moderate proportion (approximately two-thirds for
the HapMap data considered below) are very close to either
0 or 1. As a result, each row of v tends to look like a haplotype
(a string of zeros and ones), but with occasional “fuzziness”
indicating uncertainty about the alleles at some positions. That
is, each cluster can be thought of as representing a particular
combination of alleles at a subset of the markers, thus cap-
turing strong dependence among these positions, and the as-
sumption of independence can be thought of as relating to
deviations from this base combination.

Local clustering of haplotypes.—Although sampled haplo-
types certainly exhibit cluster-like patterns, these patterns tend
to be local in nature (fig. 1). To capture this, we replace the
assumption that each haplotype originates from one of K
clusters with the assumption that each allele originates from
one of the clusters, and we use an HMM to model the fact
that alleles at nearby markers are likely to arise from the
same cluster. Specifically, if denotes the cluster of origin forzim

, we assume forms a Markov chain onh z p (z ,…,z )im i i1 iM

, with initial-state probabilities{1,…,K}

p z p k p a (3)( )i1 k1

and transition probabilities given by′p (k r k )m

′ ′p (k r k ): p p z p k Fz p k,a,r( )m im i(m�1)

�r d �r d ′m m m me � 1 � e a , k p k′( ) k m: p (4)�r d ′m m{ 1 � e a , k ( k′( ) k m

for , where is the physical distance betweenm p 2,…,M dm

markers and m (assumed to be known) and wherem � 1
and are parameters to be estimated.r p (r ,…,r ) a p (a )2 M km

This Markov chain is a discretized version of a continuous
Markov jump process, with jump rate per bp between mark-rm

ers and m and with transition probabilitiesm � 1

′p z p k Fz p k, jump occurs p a . (5)′( )im i(m�1) k m

Informally, we think of as being related to the recombinationrm

rate between and m, although simulation results (notm � 1
shown) suggest that generally there may be little correspon-
dence between actual recombination rate and estimates of r.
If the physical distances between markers were not known,
then the compound parameter in equation (4) could ber dm m

replaced by a single parameter without loss of information.
Indeed, this is true even if the physical distances are known,
unless some constraint is placed on r (e.g., constraining all

to be equal). All results presented here were based on therm

unconstrained model and thus do not actually use the physical
distances between markers. However, the algorithmic deriva-
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tions in the appendixes can be used for both the constrained
and the unconstrained models.

Given the cluster of origin of each allele, we assume, as
before, that the alleles are independent draws from the relevant
cluster allele frequencies, so

M

p(hFz ,v) p p(h Fz ,v) , (6)�i i im im
mp1

where

h 1�him imp(h Fz p k,v) p v (1 � v ) .im im km km

Since is unknown, the probability of is obtained by sum-z hi i

ming equation (6) over all possible values of and weightingzi

by their probabilities:

p(hFa,v,r) p p(z Fa,r)p(hFz ,v) , (7)�i i i i
zi

where is determined by equations (3) and (4). Naivep(z Fa,r)i

computation of this sum would require a sum over possibleMK
values for , but the Markov assumption for allows the sumz zi i

to be computed much more efficiently (with computational
cost increasing linearly with KM) using standard methods for
HMMs (e.g., Rabiner 1989).

Extension to genotype data.—Now suppose that, instead of
observing haplotypes, we observe unphased genotype data

on n diploid individuals. Let denote theg p (g ,…,g ) g1 n im

genotype at marker m in individual i, which we will code as
the sum of its alleles, so has the value 0, 1, or 2. Onegim

approach to extending the haplotype-based model above to
unphased genotype data is to assume that the two haplotypes
that make up each multilocus genotype are independent and
identically distributed from equation (7)—that is, to assume
HWE. Under this assumption, if denotes the (unordered)•zim

pair of clusters from which genotype originates, thengim

form a Markov chain with initial-state• • •z p (z ,…,z )i i1 iM

probabilities

2(a ) , k p k• k 1 1 21p(z p {k ,k }) p (8)i1 1 2 {2a a , k ( kk 1 k 1 1 21 2

and transition probabilities

′ ′p ({k ,k } r {k ,k })m 1 2 1 2

′ ′ ′ ′p (k r k )p (k r k ) � p (k r k )p (k r k ) ,m 1 1 m 2 2 m 1 2 m 2 1
′ ′p k ( k and k ( k (9)1 2 1 2{ ′ ′p (k r k )p (k r k ), otherwise ,m 1 1 m 2 2

where is defined in equation (4). These expressions′p (k r k )m

come from pairing two independent Markov chains with tran-
sition probabilities given in equation (4).

Given the clusters of origin, , we again assume that the•zi

alleles are independent draws from the relevant cluster allele
frequencies, so

M

• •p gFz ,v p p g Fz ,v ,( ) ( )�i i im im
mp1

where

•p g Fz p {k ,k },v( )im im 1 2

(1 � v )(1 � v ), g p 0k m k m im1 2

p v (1 � v ) � v (1 � v ), g p 1 . (10)k m k m k m k m im1 2 2 1{v v , g p 2k m k m im1 2

Note that, if some are missing, this is easily dealt with bygim

replacing the corresponding with any•p(g Fz p {k ,k },v)im im 1 2

positive constant (e.g., 1.0); this corresponds to the assumption
that the genotypes are missing at random.

Since is unknown, the probability of is obtained by•z gi i

summing over all possible values:

• •p(gFa,v,r) p p(z Fa,r)p(gFz ,v) , (11)�i i i i
•zi

where is determined by equations (8) and (9). As be-•p(z Fa,r)i

fore, methods for HMMs allow this sum to be computed ef-
ficiently (with computational cost increasing linearly with

) (see appendix A).2K M
This model (11) is reminiscent of the “linkage” model of

Falush et al. (2003), who modeled genotype data at loosely
linked markers in structured populations. One difference be-
tween their model and ours is that they allowed a (q in their
notation) to vary among individuals but fixed a across mark-
ers, whereas we allow a to vary across markers but assume it
to be fixed across individuals. The reason for this difference
is that the interpretation of these parameters is very different
in the two applications. In the model of Falush et al. (2003),
this parameter controls each individual’s proportion of ances-
try in each subpopulation (which would be expected to differ
across individuals), whereas here it controls the relative fre-
quency of the common haplotypes (which would be expected
to differ in different genomic regions). Falush et al. (2003) also
restricted r to be constant, whereas we allow it to vary in each
marker interval.

Modeling deviations from HWE and incorporation of sub-
population labels.—Although the assumption of HWE will not
hold exactly for real populations, previous studies have con-
sistently suggested that models based on HWE can perform
well at haplotype inference and missing-data imputation, even
when there are clear and substantial deviations from HWE
(e.g., Fallin and Schork 2000; Stephens and Scheet 2005). Nev-
ertheless, we examined the potential benefits of modifying the
above model to deal with a certain type of deviation from
HWE. Specifically, we consider the situation in which the sam-
pled individuals might be considered to be sampled from S
distinct subpopulations. (For example, the SeattleSNPs data
considered below consist of samples from 24 African Ameri-
cans and 23 individuals of European descent, and we treat
these as separate subpopulations.) Let denote thes � 1,…,Si

subpopulation of origin for individual i (which is assumed to
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be known here, although extension to the case where issi

unknown may also be interesting). Because of shared ancestry,
different subpopulations may share some of their haplotype
structure, although haplotype frequencies and levels of LD
would be expected to differ. To capture this, we let the v pa-
rameters be shared across subpopulations but allowed the a

and r parameters to vary among the subpopulations. Thus,
and , where denote(1) (S) (1) (S) (j) (j)a p (a ,…,a ) r p (r ,…,r ) (a ,r )

the parameters relating to subpopulation j, and

n

(s ) (s )i ip gFa,v,r,s p p gFa ,v,r , (12)( ) ( )� i
ip1

where and is as defined in equa-(s ) (s )i is p (s ,…,s ) p gFa ,v,r( )1 n i

tion (11).

Computation and Parameter Estimation

In this section, we outline the methods used to fit the models
(11) and (12) and to perform two applications: missing-
genotype imputation and haplotype inference.

Parameter estimation.—We use an expectation-maximiza-
tion (EM) algorithm (Dempster et al. 1977) to estimate the
parameters of our model (see appendix C for de-n p (v,a,r)
tails). The computational complexity of the algorithm is

and, in particular, is linear in the number of sampled2O(nMK )
individuals and markers, which allows it to be fitted to large
data sets.

As with any EM algorithm, our algorithm will typically find
a local maximum of the likelihood function .L n;g p p gFn( ) ( )
For realistic data sets, this likelihood surface will have many
different local maxima, and thus different starting points for
the EM algorithm will typically lead to different parameter
estimates. A standard approach to dealing with this problem
is to first apply the algorithm T times from T different starting
points, obtaining T estimates , and then select which-ˆ ˆn ,…,n1 T

ever of these estimates gives the highest value for the likelihood.
However, because our focus here is on using the model for
prediction and not on parameter estimation itself, it is not
necessary to settle on a single estimate for the parameters, and,
in our tests, we found that we were able to obtain more ac-
curate predictions by combining results across T estimates, as
described below. We also found that, using this strategy of
combining across estimates, reliable performance can be ob-
tained with relatively few iterations of the EM algorithm per
starting point—probably far fewer than would be required by
most methods of monitoring convergence. For the results pre-
sented here, we typically used starts of the EM algo-T p 20
rithm, with up to 25 iterations per start, although results of
experiments suggest that these values could be reduced without
sacrificing accuracy (results not shown). For each initializa-
tion of the EM algorithm, we set , choser p 0.00001 vkm

to be independent and identically distributed uniform on
, and let . Our methods ap-[0.01,0.99] a ∼ Dirichlet(1,…,1)7m

peared somewhat robust to deviations from these choices (e.g.,
setting , for all m and k, produced similar meana p 1/Kkm

accuracy), although we did not undertake a detailed study.
Missing-genotype imputation.—For any genotype that isgim

unobserved (“missing”), it is straightforward to compute the

probability that ( ), given all observed ge-g p x x p 0,1,2im

notypes g and parameter values n, by use of

K K

•p g p xFg,n p p g p xFz p {k ,k },n( ) ( )� �im im im 1 2
k p1 k pk1 2 1

•# p z p {k ,k }Fg ,n .( )im 1 2 i

The first term in this sum is given by equation (10), and the
second term is the conditional distribution of the hidden var-
iables in the HMM, which can be obtained using standard
methods for HMMs (appendix A).

A natural point estimate for is then obtained by choosinggim

the value of x that maximizes this expression. As noted above,
we have found it helpful to combine results over several sets
of parameter estimates , obtained from T different ap-ˆ ˆn ,…,n1 T

plications of the EM algorithm using different starting points.
Specifically, we used the estimate

T1
ˆ ˆg p argmax p g p xFg,n .( )�im im tT tp1x�{0,1,2}

This method imputes genotypes marginally and provides a
“best guess” for each genotype. It is also straightforward to
sample from the joint distribution of the missing genotypes
given observed data—for example, by sampling from the con-
ditional distribution of the haplotypes for all individuals, as
described below.

Haplotype inference.—We consider two aspects of the hap-
lotype inference problem: (1) sampling the pairs of haplotypes
of all individuals from their joint distribution given the un-
phased genotype data—this provides a useful way to assess or
account for uncertainty in haplotype estimates—and (2) con-
structing point estimates of the haplotypes carried by each
individual—this is how many haplotype-reconstruction meth-
ods are used in practice (as a prelude to subsequent analysis
of the estimated haplotypes). It also provides a convenient basis
for comparison with other haplotype reconstruction methods.

Sampling haplotypes from their joint distribution.—We will
use the term “diplotype” to refer to a pair of haplotypes that
comprise the genetic data for an individual. Let denote thedi

diplotype for individual i, and . Conditional ond p (d ,…,d )1 n

a particular parameter value n, the diplotypes of different in-
dividuals are independent (i.e., ), andp(dFg,n) p � p(dFg ,n)i ii

thus one can sample from by sampling independentlyp dFg,n( )
from for each i. A method for doing this is describedp dFg ,n( )i i

in appendix B.
To combine results from T initiations of the EM algorithm,

we obtain a sample of size as the union of B inde-d̃ T # B
pendent samples from each of . Whenˆ ˆp dFg,n ,…,p dFg,n( ) ( )1 T

constructing below, we used and ; forˆ SWd T p 20 B p 50i

, we used and .ˆ INd T p 20 B p 200i

Point estimation.—We have implemented two different
methods for producing point estimates, , of the diplotypesd̂i

of individual i. Both are obtained by first creating a sample
of diplotypes for individual i, as described above. From thisd̃i

sample, we define the following estimates.

1. , which is the diplotype that appears most often inˆ INdi
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. This estimate is motivated by an attempt to maximized̃i

the probability that the whole diplotype is correct or,
equivalently, to minimize the “individual error rate”—
that is, the proportion of individuals whose haplotypes
are not determined by their genotype data (Stephens et
al. 2001).

2. , which is constructed as follows. Starting at one endˆ SWdi

of the genetic region, we move through the heterozygous
sites, phasing each site relative to the previous hetero-
zygous site by selecting the two-site diplotype that occurs
most frequently (at that pair of sites) in . This estimated̃i

is motivated by an attempt to minimize the “switch er-
ror”—that is, the proportion of heterozygous sites that
are phased incorrectly relative to the previous heterozy-
gous site (this is 1 minus the switch accuracy of Lin et
al. [2002]).

Note that, for data sets containing a large number of mark-
ers, individuals may have a very large number of plausible
diplotype configurations, none of which are overwhelmingly
more probable than the others. In such cases, the most prob-
able diplotype configuration is both difficult to reliably identify
(requiring a very large sample ) and not especially interestingd̃i

(in that it is very unlikely to be correct). Therefore, for large-
scale studies, we would tend to favor the use of over .ˆ ˆSW INd di i

Selecting K.—Selection of K is essentially a model-selection
problem, which is, in general, a tricky statistical problem. We
found that standard approaches to model selection, such as
Akaike information criterion (Akaike 1973) and Bayesian in-
formation criterion (Schwarz 1978), do not work well here
(selecting a K that is too small), probably because the asymp-
totics on which they are based do not apply. We therefore used
the following cross-validation approach to select K. For each
data set, we masked (i.e., made missing) ∼15% of the geno-
types at random (note that, in our tests of imputation accuracy
below, the data set to be analyzed would already have had
some genotypes masked; we did not use these masked geno-
types when selecting K). Then, for a range of values of K (we
considered , 6, 8, 10, and 12; the upper limit reflectsK p 4
our desire to keep the computational burden low), we used
our model to estimate the masked genotypes, as described
above, comparing these estimates with the true genotypes. We
selected the K that maximized the number of correctly esti-
mated genotypes.

This procedure is relatively computationally intensive, since
it involves fitting the model for several values of K, and the
computational cost increases with . To reduce the compu-2K
tational burden, we used only a small number of starts (as few
as three) for the EM algorithm when performing the cross-
validation. In addition, in the results we present here, we some-
times chose a single K for several data sets on a common set
of individuals. For example, for the SeattleSNPs data consid-
ered later, when analyzing data on a particular set of individ-
uals, we selected a single K for all genes, on the basis of ap-
plying the cross-validation approach to a subset of the genes.
Preliminary comparisons suggested that this approach gave
similar average accuracy to the more computationally intensive
approach of choosing K separately for each gene (data not
shown). For missing-genotype estimation results from the

HapMap project, we selected K by using only a small portion
of the data, since the data sets were so large.

Because we found performance to be relatively robust to a
range of values of K, in cases where the computational cost
of this strategy becomes inconvenient an alternative approach
would be to simply select a fixed value of K ( seemedK p 8
to perform reasonably well across a range of scenarios in our
tests). It would also be possible, and perhaps fruitful, to com-
bine results across parameter estimates obtained using different
values of K rather than selecting a single K value.

Results

The methods described above for imputing missing-
genotype data and estimating haplotypes are imple-
mented in a software package called “fastPHASE,”
which is available for download from the Stephens Lab
Web site. Here, we compare performance of these meth-
ods with several other available methods, including
PHASE version 2.1.1 (Stephens et al. 2001; Stephens and
Donnelly 2003; Stephens and Scheet 2005), GERBIL
versions 1.0 and 1.1 (Kimmel and Shamir 2005b), and
HaploBlock version 1.2 (Greenspan and Geiger 2004).
The models underlying both GERBIL and HaploBlock
bear some similarity to our model, being based on the
idea of clusters of haplotypes, but in these models, clus-
ter membership is allowed to change only at certain
points in the genome (“block-boundaries”), which are
estimated from the data. The model underlying PHASE
is based on the PAC model of Li and Stephens (2003),
which shares the flexibility of the model we present here
but is considerably more costly to compute. In compar-
isons elsewhere (Stephens and Scheet 2005), we found
that PHASE outperformed several other methods in ac-
curacy of both missing-data imputation and haplotype
estimation, but GERBIL and HaploBlock were not in-
cluded in those comparisons. For haplotype estimation,
Kimmel and Shamir (2005b) found that GERBIL per-
formed better than HaploBlock but slightly less well than
PHASE. However, they did not examine accuracy in
missing-data imputation, and, as far as we are aware,
our comparisons provide the first published assessment
of GERBIL and HaploBlock for this task. PHASE and
GERBIL were run with their default settings, and Haplo-
Block was run with the �W option (which produces
estimates by combining over multiple solutions, similar
to our strategy of combining estimates from multiple
runs of the EM algorithm; this option seemed to give
more accurate results but took longer to run than the
alternative �F option).

Missing-Data Imputation

We examined accuracy of methods for missing-data
imputation with both complete sequence data in mul-
tiple candidate genes (from the SeattleSNPs Variation
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Table 1

Error Rates for Estimation of Missing Genotypes for SeattleSNPs

METHOD

ANALYZED SEPARATELY ANALYZED COMBINED

AA
Error

ED
Error Totala

AA
Error

ED
Error Totala

Total
(Separate )aa,r

fastPHASE .053 .024 .039 .051 .022 .037 .035
PHASE version 2.1.1 .058 .030 .044 .052 .024 .038 NA
GERBIL version 1.1 .067 .030 .048 .063 .026 .045 NA
HaploBlock .053 .026 .040 .051 .026 .039 NA
fastPHASE with fixed K:

K p 4 .066 .029 .048 .072 .032 .052 .046
K p 6 .059 .024 .042 .061 .027 .045 .039
K p 8 .058 .026 .042 .054 .024 .039 .036
K p 10 .054 .027 .041 .051 .023 .037 .036
K p 12 .053 .026 .039 .051 .022 .037 .035

NOTE.—Error rates are based on estimation of 9,479 missing genotypes. The best-performing
method in each column is in bold italics. The differences among fastPHASE, PHASE, and
HaploBlock are not statistically significant; the differences between these three methods and GERBIL
are significant ( ) on the basis of bootstrap resampling of the 50 genes. AA p AfricanP ! .007
American sample; ED p European-descent sample.

a Total error rate for combined sample. The “Separate ” total gives results from use of thea,r
model in section 2.1.4.

Discovery Resource) and genomewide dense SNP data
(1 SNP every 2–3 kb across entire chromosomes) from
the International HapMap Project (International Hap-
Map Consortium 2005).

SeattleSNPs.—We analyzed the same data from the
SeattleSNPs resequencing project as were analyzed else-
where (Stephens and Scheet 2005); we considered se-
quence data on 50 autosomal genes, containing 15–230
SNPs, from 24 African Americans and 23 individuals of
European descent. For each gene, we masked ∼5% of
the individual genotypes at random. We then used var-
ious methods to estimate the masked genotypes and as-
sessed performance by computing the error rate as the
proportion of masked genotypes that were not estimated
correctly.

As elsewhere (Stephens and Scheet 2005), we used
each method to analyze the data in two ways: (1) an-
alyzing the African American and European-descent
samples separately and (2) analyzing the combined sam-
ple of 47 individuals together. For both of these ap-
proaches, we computed both the overall (total) error
rates and error rates stratified by subpopulation (table
1). All four methods performed well—better than most
of the methods considered elsewhere [Stephens and
Scheet 2005])—with fastPHASE yielding the lowest
error rate (although differences among fastPHASE,
PHASE, and HaploBlock were not statistically signifi-
cant). As in a previous study (Stephens and Scheet 2005),
our analysis of data from the African American and
European-descent samples combined seemed to give a
small decrease in error rate compared with analysis of
the samples separately, which illustrates the relative ro-
bustness of the methods to deviations from HWE.

We also assessed robustness of the results from fast-
PHASE to the number of clusters, K (table 1). For these
data, results are relatively robust across the range of K
considered here, at least provided that K is sufficiently
large (say, at least 6). Error rates generally tended to
decrease as K increased from 4 to 12, although, for
sufficiently large K, we would expect the error rates
to increase, and the rather small differences between

, 10, and 12 suggest that larger values of K wouldK p 8
not produce a substantial improvement in performance.

To examine whether accuracy could be improved by
taking account of the subpopulation of each sample, we
also analyzed the combined-sample data by using the
“separate a, r” model from (12). This model produced
a very small improvement in error rate and also appeared
to make results more robust to the choice of K (last
column of table 1).

The results for fastPHASE in table 1 were all obtained
by averaging over parameter estimates from T p 20
starts of the EM algorithm. We found that estimates
based on only the parameter value (among these 20 es-
timates) that maximized the likelihood were consistently
less accurate. For example, in the combined analysis with

, this latter (maximization) strategy gave an errorK p 6
rate of 0.051, compared with 0.045 for the averaging
strategy.

CEPH HapMap data.—We obtained HapMap data for
chromosomes 7 (41,018 SNPs across 159 Mb) and 22
(15,532 SNPs across 35 Mb) from parents in 30 CEPH
trios (60 unrelated individuals) from a phase I data freeze
(March 2005; International HapMap Project). We pro-
duced data sets with missing genotypes by masking 10%
and 25% of genotypes at random and computed error
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Table 2

Error Rates for Estimation of Missing Genotypes for CEPH HapMap
Data

DATA ANALYZED

AND METHOD

ERROR RATE FOR CHROMOSOME

7 22

10%
Masked

25%
Masked

10%
Masked

25%
Masked

Whole chromosome:
fastPHASE .034 .041 .033 .039
fastPHASE, 1 start .046 .057 .045 .056

Separate 150-SNP data sets:
fastPHASE .036 .044 .035 .042
PHASE version 2 … … .038 .049
GERBIL version 1.1 .056 .077 .054 .073

NOTE.—For each chromosome, 10% and 25% of the data were
masked, resulting in 242,481 and 606,985 missing genotypes for chro-
mosome 7 and 93,476 and 232,731 missing genotypes for chromosome
22. Results for fastPHASE were obtained from 20 random starts of
the EM algorithm, except for the “1 start” case, for which results were
obtained from a single random start.

Table 3

Error Rates for Estimation
of Missing Genotypes with
fastPHASE for CEPH HapMap
Data, Chromosome 22

Missing Data
(%) fastPHASE Error

10 .033
20 .037
30 .042
40 .051
50 .064
60 .089
70 .137
80 .227
90 .358

NOTE.—We masked 10%–90%
of the data at random, which re-
sulted in 93,476–837,853 missing
genotypes, and applied fastPHASE
to the entire chromosome 22.

rates for different methods of estimating these genotypes.
Using fastPHASE, we were able to analyze the complete
data for each chromosome. However, other methods
struggled computationally; thus, to allow comparisons
with these methods, we also split the data sets into non-
overlapping segments, each containing 150 consecutive
SNPs, and analyzed each segment separately. Even so,
HaploBlock failed to finish computing results for several
data sets after weeks of running on multiple machines
and thus was omitted from the comparisons. Because of
the amount of computation required, we applied PHASE
to only the chromosome 22 data sets.

Results are given in table 2. For these data, fastPHASE
again produced a lower error rate than those of the other
methods, with very slightly better accuracy when all data
were analyzed simultaneously instead of in 150-SNP seg-
ments. PHASE performs about as well as fastPHASE,
and the improvement of these methods over GERBIL
was more substantial for these data than for the Seattle-
SNPs data. The main differences between the data sets
are that (i) the HapMap SNPs tend to have a higher
minor-allele frequency, because of the way in which these
SNPs are ascertained, and (ii) the HapMap SNPs are
more widely spaced and thus would be expected to ex-
hibit less LD. Both these factors presumably contribute
to the slightly worse performance of all methods for the
HapMap data compared with the European-descent
sample of the SeattleSNPs data.

The high accuracy with which genotypes could be es-
timated with even 25% missing data prompted us to
examine in more detail the relationship between accu-
racy and rates of missingness (table 3). Although this
missing-at-random pattern is not a realistic assumption
for missing data observed in real studies, the fact that
accuracy remains high (193%) even with 50% of the

genotypes deleted illustrates both the effectiveness of the
methodology and the strong correlations that exist
among SNPs at this density.

Haplotype Inference

X-chromosome data.—We assessed the accuracy of
haplotype estimates by using the X-chromosome data
from Lin et al. (2002), also analyzed elsewhere by Ste-
phens and Donnelly (2003) and by us (Stephens and
Scheet 2005). The data consist of X-chromosome hap-
lotypes derived from 40 unrelated males. The haplotypes
comprise eight regions, which range in length from 87
to 327 kb and contain 45–165 SNPs. For each of the
eight genes, we used the same 100 data sets as elsewhere
(Stephens and Scheet 2005), each consisting of 20
pseudo-individuals, created by randomly pairing the 40
chromosomes.

As in previous comparisons of this type, haplotype
estimates obtained using different methods were scored
using two error rates: the individual error (the propor-
tion of ambiguous individuals whose haplotypes are not
completely correct) and the switch error (the proportion
of heterozygote genotypes that are not correctly phased
relative to the previous heterozygote genotype). In com-
puting these proportions, we summed both numerator
and denominator over all data sets (which is8 # 100
slightly different from computing an error rate for each
of the eight genes and then averaging these rates, as in
table 2 in an earlier publication [Stephens and Scheet
2005]). In computing these scores for each individual,
we ignored sites where one or both alleles were missing.

Results are given in table 4. For data sets like these,
which contain at least a moderate number of SNPs, es-
timating any individual’s haplotypes completely cor-
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Table 4

Individual and Switch Error Rates for Haplotype
Estimates Produced by Different Methods
for the X-Chromosome Data

Method
Individual

Error
Switch
Error

fastPHASE ( )ˆ SWd .654 .111
fastPHASE ( )ˆ INd .641 .116
PHASE version 2.1.1 .624 .113
GERBIL version 1.0 .660 .118
HaploBlock .702 .122
fastPHASE ( ) with fixed K:ˆ SWd

K p 4 .654 .111
K p 6 .642 .109
K p 8 .645 .110
K p 10 .650 .111
K p 12 .657 .113

NOTE.—The best-performing method in each error-
rate column is in bold italics.

rectly is difficult. As a result, individual error rates of
all methods are high, and it could be argued that the
switch error is a more meaningful measure of perfor-
mance. However, the qualitative conclusions are the
same based on either error rate. Consistent with the re-
sults of Kimmel and Shamir (2005b), PHASE slightly
outperformed GERBIL, which slightly outperformed
HaploBlock; fastPHASE produced an individual error
rate between that of PHASE and that of GERBIL and
produced the lowest switch error rate (although the dif-
ference from the switch error rate of PHASE is small
and not statistically significant). As one might hope, the
point estimate from fastPHASE, which aims to min-ˆ SWd
imize the switch error, produces a lower switch error
than does , which aims to minimize the individualˆ INd
error. Conversely, produces a lower individual errorˆ INd
rate. Results from fastPHASE are again robust to a range
of values of K.

For these data, averaging results over multiple param-
eter estimates obtained from multiple starts of the EM
algorithm turned out to be particularly important for
obtaining good performance. For example, for ,K p 4
the point estimate obtained using only the single setˆ SWd
of parameter estimates that give the largest likelihood
yielded error rates that were worse than those of any of
the other methods considered here (individual error
0.716; switch error 0.134).

It is also notable that, for these data, even the simple-
cluster model (which can be obtained as a special case
of our model by setting for all m) performs sim-r p 0m

ilarly to GERBIL, with an individual error rate of 0.648
and a switch error rate of 0.119. This is perhaps because
of lower levels of historical recombination for these X-
chromosome genes; thus, these data may not provide the
best guide to performance of haplotype-inference meth-
ods on autosomal data.

HapMap data.—Marchini et al. (2006) compared sev-
eral methods for haplotype inference on samples of both
unrelated and related individuals (trios of parents and
child). We consider here the data they used from unre-
lated individuals, which consist of three simulated data
sets and one real data set. The simulated data consist of
three “trials” (SU1, SU2, and SU4 of Marchini et al.
[2006]), which were simulated using coalescent methods
with the following conditions: for trial 1, constant-sized
population and constant recombination; for trial 2, con-
stant-sized population with variable recombination; and
for trial 4, population demography approximating that
of a European population and variable recombination,
with 2% of genotypes masked. The real data consist of
unrelated CEPH samples (60 parents from 30 trios) from
the HapMap project (International HapMap Consor-
tium 2005), for which the real haplotypes were deter-
mined using the trio data under the assumption of no
recombination from parents to offspring. (Under this
assumption, the trio data determine phase at a large
proportion of sites; the remaining ambiguous sites were
ignored in scoring methods.)

We applied fastPHASE to the unphased genotypes
from these data and sent the estimated haplotypes
( ) to J. Marchini, who independently scored the re-ˆ SWd
sults. Table 5 compares the results from fastPHASE with
those of other methods in the original comparison. The
results from fastPHASE were consistently worse than
those of PHASE (and those of wphase, for the simu-
lated data) and were consistently better than those of
the other methods, HAP and HAP2. Encouragingly for
our model, the performance difference between fast-
PHASE and PHASE was the smallest for the real data,
with switch errors of 0.055 and 0.051, respectively.

Calibration of Probability Calculations

All the comparisons above are based on assessing the
accuracy of point estimates of estimated genotypes or
inferred haplotypes. However, by use of our model, it is
also quick and easy to compute probabilities for each
missing genotype and to produce samples from the con-
ditional distribution of haplotypes, given the unphased
genotypes. These can be used to take account of un-
certainty in estimated genotypes and/or haplotypes in
downstream analysis—for example, by performing the
subsequent analysis on multiple sampled haplotype re-
constructions to check for robustness of conclusions or,
more formally, by using Bayesian statistical methods.
However, to justify this strategy, the model should ide-
ally produce approximately calibrated predictions. For
example, of genotypes assessed to have a probability of
0.9 of being correct, ∼90% should actually be correct.

We therefore assessed the calibration of predictions
from our model, for both genotype imputation and hap-
lotype inference. For each imputed genotype, we com-
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Table 5

Accuracy of Haplotype-Inference Methods for Simulated Data (Trials 1, 2, and 4) and Real Data from HapMap

METHOD

TRIAL 1 TRIAL 2 TRIAL 4 REAL DATA

Individual
Error

Switch
Error

Individual
Error

Switch
Error

Individual
Error

Switch
Error Missinga

Individual
Error

Switch
Error

fastPHASE ( )ˆ SWd .653 .045 .887 .069 .760 .058 .091 .879 .055
PHASE version 2 .355 .024 .404 .022 .620 .053 .075 .815 .051
wphase .480 .037 .521 .037 .680 .066 .090 … …
HAP .886 .065 .971 .098 .906 .074 .116 .919 .066
HAP2 .735 .069 .990 .151 .871 .087 .150 .901 .078

NOTE.—Results for wphase (N. Patterson, personal communication), HAP (Halperin and Eskin 2004), and HAP2 (Lin et
al. 2002) were obtained by Marchini et al. (2006).

a Genotype-imputation error rate.

puted the probability, p, under our model, that the im-
puted genotype was correct. We then grouped imputed
genotypes into bins, according to their value for p, and,
for each bin, we compared the average value of p with
the proportion of genotypes that were actually correct.
For haplotype reconstruction, we examined the calibra-
tion of a sample of diplotype configurations, , by look-d̃
ing at potential switch errors—that is, by examining, in
each individual, the phase of each heterozygous site rel-
ative to the previous heterozygous site. For each such
pair of heterozygous sites, we computed the proportion,
q, of the configurations in that contained the mored̃
common of the two possible phasings. We then grouped
these site pairs into bins, according to their value for q,
and, for each bin, we compared the average value of q
with the proportion of phasings that were actually
correct.

The results (fig. 2) show that our model is reasonably
well calibrated, but slightly conservative, for both tasks.
For example, of genotypes assessed a 90% chance of
being correct, roughly 96% were actually correct in both
the SeattleSNPs and HapMap data sets. One curious
feature of the results is the slight drop in accuracy for
the highest confidence bin (corresponding to 98% pre-
dicted probability of being correct, a value that results
from the limits of 0.99 and 0.01 we imposed on elements
of v) in the SeattleSNPs data. Closer inspection reveals
that this is because of errors in imputing genotypes of
masked heterozygotes at singleton SNPs (i.e., SNPs
where only one copy of the minor allele is present). When
such genotypes are masked, our model very confidently
but wrongly assesses them to be homozygous for the
only observed allele. This could be viewed as an artifact
due to the fact that the data contain only polymorphic
SNPs and that our model does not condition on the
markers being polymorphic.

Differences in Computational Requirements

The relative computation times of the different meth-
ods we consider here vary across data sets and depend
on the way in which the methods were applied (e.g.,

how many iterations were used). As we applied the
methods here, fastPHASE and GERBIL require similar
amounts of computational resources, and both are con-
siderably faster than PHASE and HaploBlock. Com-
putation times for all results are summarized in table 6.
The increased speed of fastPHASE, compared with
PHASE, would be greater for samples with a larger num-
ber of individuals.

Discussion

We have presented a model for genetic variation among
unrelated individuals, which is computationally tracta-
ble for large-scale sets of unphased SNP genotype data.
Each data set considered here, including whole-chro-
mosome data from phase I of the HapMap project, took
!10 h to analyze (table 6). To test the feasibility of ap-
plying our model to even larger data sets, we created a
data set containing 3,150 individuals typed at 290,630
SNPs by concatenating 15 copies of the chromosome 2
genotypes of 210 unrelated individuals from phase II of
the HapMap project. Our software required 97 h (on a
single 3-GHz Xeon processor with 8 GB of RAM) to fit
the model once to these data. In addition to its com-
putational convenience, the model is also flexible and
can capture both the sudden decline of LD that might
be expected across a recombination hotspot and the
more gradual decline of LD with distance. Indeed, for
the task of imputing missing genotypes, our model per-
formed better than any other method we considered. For
inference of haplotypes, it performed slightly less well
(on the real-data comparisons) than the best of the meth-
ods we considered, PHASE version 2, but at a fraction
of the computational cost. It seems slightly puzzling that,
at least for CEPH HapMap data, fastPHASE appears to
outperform PHASE for missing-genotype imputation
(table 2) but to perform less well than PHASE for hap-
lotype inference (last column of table 5). We have no
good explanation for why this should be (the differences,
though small, appear statistically significant because the
data sets are large).
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Figure 2 Calibration of our model for predicting uncertainty in inferred genotypes and haplotypes. Points (triangles) represent probabilities
obtained by averaging over the 20 runs of the EM algorithm, as described in the text.

There are at least two factors that may contribute to
the improved performance of our model compared with
the block-based model underlying GERBIL (which is
perhaps the most similar to our model among those con-
sidered here). The first is the increased flexibility of our
model, in that cluster membership can change contin-
uously along the genome and not only across block
boundaries. The second is the fact that we average results
over multiple fits of our model to improve accuracy,
whereas, as far as we are aware, GERBIL does not. Since
a similar averaging strategy also seems to improve per-
formance of HaploBlock, it may be interesting to ex-
amine whether averaging could be used to improve per-
formance of GERBIL and, indeed, of other methods.

Our strategy of averaging results across applications
of the EM algorithm is slightly unusual. However, av-
eraging results across models has often been observed
to produce improved predictive performance, dating
back at least to Bates and Granger (1969) and becoming
particularly popular recently with the increased use of
Bayesian methods and the development of methods such
as bagging (Breiman 1996) and boosting (Freund and
Schapire 1996). Indeed, there are good theoretical rea-
sons to expect averaging across multiple runs to produce
better performance than using results from a single run
of the EM algorithm; the averaging reduces the variance
of predictions while leaving any bias unchanged. Of
course, this alone does not fully explain our empirical
finding that averaging across multiple runs produces bet-
ter performance than making predictions based on the
run with the highest likelihood. However, it is worth
noting that this latter, more standard approach is also
theoretically dubious in this setting, because the asymp-
totic theory that underlies maximum-likelihood esti-
mation may not be applicable to most data sets, because
of the large number of parameters in the model.

The averaging scheme that we use involves formation

of equally weighted averages across multiple model fits.
One might expect that a more sophisticated averaging
scheme might further improve performance. We tried
weighting results according to the likelihood of the cor-
responding parameter estimates, but this typically pro-
duced a worse performance, very similar to that of se-
lecting the single parameter values with the largest
likelihood, because one or two of the likelihoods are
typically much greater than all the others, and so the
average is dominated by these parameter values. A
Bayesian version of our model would certainly be pos-
sible and would provide a more coherent way to average
over parameter values. However, a fully Bayesian im-
plementation would presumably greatly increase com-
putational cost and seems unlikely to lead to substantial
improvements in prediction accuracies.

Another novel aspect of our work is the extension of
our model to deal with samples from multiple subpop-
ulations. For the data we considered here, involving 24
African Americans and 23 individuals of European de-
scent, we found that a slight but consistent improvement
in performance could be obtained by taking account of
the subpopulation of origin of each individual. We have
also found a similar slight improvement when analyzing
data from the four analysis panels of the HapMap pro-
ject (results not shown). It seems likely that the gains of
using this model will depend on sample size and the
amount of divergence among the subpopulations, al-
though we have not studied this dependence. Given the
similarities between our model and those of Pritchard
et al. (2000) and Falush et al. (2003), it seems natural
to consider extending our model to the case in which
the subpopulation(s) of origin of each individual is un-
known, effectively producing a method for clustering
individuals that can deal with sets of tightly linked mark-
ers. This might be especially helpful for investigating
population structure in organisms with small genomes
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Table 6

Comparison of Computation Times (in Hours) for Different Methods

METHOD

MISSING-GENOTYPE ESTIMATION

HAPLOTYPE

INFERENCE FOR

X CHROMOSOME

(7%)
SeattleSNPs

(10%)

HapMap
Chromosome 7

HapMap
Chromosome 22

10% 25% 10% 25%

fastPHASE 1.3 9 8 5 5 2
PHASE version 2 29.3 NA NA 323 720 151
GERBIL .6 29 32 10 8 2
HaploBlock 160.1 NA NA NA NA 265

NOTE.—Each method was applied on a 3-GHz Xeon processor with 1 GB of memory. The
SeattleSNPs column is for analyses of all 47 individuals together. For missing-genotype estimation,
fastPHASE was applied to the data without inference of haplotypes. Calculation times for Haplo-
Block with the SeattleSNPs data and for PHASE version 2 with HapMap chromosome 22 data
are based on extrapolation from a subset of the data sets. Approximate percentages of missing
data are in parentheses. Bold italics indicate the fastest method(s) for each data set.

and/or little recombination, for which finding large sets
of unlinked (or loosely linked) markers will be more
problematic than in humans.

Our model has a very large number of parameters,
and, for realistic data sets, we would not expect all pa-
rameters to be well estimated. It is possible to decrease
the number of parameters by imposing constraints on
a, v, and/or r. For example, we tried constraining r and
a to be constant across the genome. We also experi-
mented with ad hoc smoothing schemes to encourage a

and r to vary smoothly across the genome. However, in
comparisons (not shown), these strategies did not lead
to an improved performance in our applications, sug-
gesting, perhaps surprisingly, that the large number of
parameters does not greatly diminish the predictive
power of the model.

While preparing this article, we became aware of in-
dependent work by Rastas et al. (2005) and Kimmel and
Shamir (2005a) on models similar to the one we present
here. In particular, these authors also pursue the strategy
of modeling cluster membership along the chromosome
by using an HMM. The main difference between their
models and ours is that, in our model, when a jump in
cluster membership occurs, the distribution of the new
cluster does not depend on the current state (that is,
the right-hand side of eq. [5] does not depend on k),
whereas, in their models, it does. This results in our
model being less computationally complex (the proce-
dures we describe here have computational complexity

compared with for the EM algorithm of2 3O(K ) O(K )
Rastas et al. [2005]). A less important difference is that
we allow for the possibility of allowing the jump prob-
ability between markers in the HMM to depend on the
physical distances between markers—for example, by
constraining the to be equal in equation (4). However,rm

as noted earlier, we did not find that this improved per-

formance over the unconstrained model, in which jump
probabilities do not depend on marker spacing.

In addition to this difference between the models,
there are also several further differences, both in the
applications considered (Rastas et al. [2005] apply their
model to haplotype inference, and Kimmel and Shamir
[2005a] consider disease mapping) and in the way these
applications are tackled. For example, Rastas et al.
(2005) estimate haplotypes for each individual by first
using the Viterbi algorithm to find the most-probable
cluster memberships and then obtaining the most prob-
able diplotype, given these cluster memberships (see also
Kimmel and Shamir 2005b). Note that this will not, in
general, find the most probable diplotype for each in-
dividual, but the empirical results suggest that it is a
reasonable procedure. In contrast, we use Monte Carlo
simulation to find haplotype estimates that attempt to
minimize two different error measures. In addition, Ras-
tas et al. (2005) and Kimmel and Shamir (2005a) use
much more complex initialization strategies for their EM
algorithms than we do here. It seems possible that our
approach of averaging across runs of the EM algorithm
obviates the need for more-complex initialization pro-
cedures, and so it is unclear whether combining these
approaches would improve performance.

The two applications we considered here—namely,
missing-data imputation and haplotype inference—are
of direct interest in themselves, particularly as a prelude
to subsequent analyses using methods that cannot deal
with missing or unphased genotypes. We believe that
they are also of indirect interest for the role they may
eventually play in the development of powerful associ-
ation-based methods for mapping disease genes (see also
Kimmel and Shamir 2005a). Moreover, although the use
of haplotypes in such methods has received more atten-
tion, we would argue that, in the longer term, methods
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to accurately estimate missing and untyped genotypes
may prove to be more important. One of the primary
motivations for haplotype-based mapping methods is
that, if an untyped variant is responsible for affecting
phenotype and if this untyped variant (and therefore the
phenotype) is strongly associated with a particular hap-
lotype but not with any individual SNP, then haplotype-
based tests might succeed in detecting a significant effect
where tests based on individual SNPs fail. That is, they
are based on the idea that haplotypes may be better
predictors of untyped genotypes than are individual
SNPs. Indeed, some existing methods are explicitly based
on the idea of using haplotypes to predict genotypes at
one or more causal SNPs (e.g., Zöllner and Pritchard
2005). However, in these methods, the use of haplotypes
is merely a convenient intermediate step in predicting
the untyped variants; if one had a “black box” that could
predict genotypes of untyped variants directly from un-
phased genotype data, then this could similarly form the
basis of methods for association mapping, bypassing the
need for haplotype estimates (see also the work of Chap-
man et al. [2003], for relevant discussion and the caveat
that haplotype estimation methods may still be useful
for studying certain types of interactions among closely

linked causal SNPs). For this application, a limitation
of our model is that, because it has a parameter vector
(the columns of v) that must be estimated for each SNP,
it is suited to the imputation of genotypes only at SNPs
where several (and preferably many) individuals have
been genotyped and not at sites where no individuals
have been genotyped. Although the HapMap and large-
scale resequencing studies, such as the SeattleSNPs pro-
ject, helpfully provide reference panels of individuals
typed at large numbers of SNPs, many SNPs potentially
involved in human disease are currently untyped in such
panels, and we are working to extend our model to allow
it to impute genotypes at such SNPs. Ultimately, our
hope is that the kinds of models and methods examined
here will form the foundation for new and more-effective
statistical methods for analyzing whole-genome associ-
ation studies.
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Appendix A

Forward and Backward Algorithms

Two fundamental quantities associated with HMM computations are the so-called forward and backward prob-
abilities:

I{k (k }1 21i •f m,{k ,k } : p p g , … ,g ,z p {k ,k }Fn and( ) ( )n 1 2 i1 im im 1 2 ( )2
i •b m,{k ,k } : p p g , … ,g Fz p {k ,k },n ,( ) ( )n 1 2 i(m�1) iM im 1 2

where is equal to 1, if A is true, and zero otherwise. (The factor is not usually included in the definitionI{k (k }1 2I (1/2){A}

of f, but we include it here for later notational convenience.) Although computation of these quantities for HMMs
via recursive formulas is standard, we give these formulas here because some care is needed to ensure these
computations have complexity , rather than .2 4O(K ) O(K )

The forward calculation is given by

i • i( )f m � 1,{k ,k } pp g Fz p {k ,k },n p J p 0Fn f m,{k ,k }( ) ( ) ( )n 1 2 i(m�1) i(m�1) 1 2 im n 1 2[
K Kp J p 1Fn( )im

i ′ i ′� a f m,{k ,k } � a f m,{k ,k }( ) ( )� �k (m�1) n 2 k (m�1) n 11 2( )′ ′2 k p1 k p1

K K

i ′ ′� p J p 2Fn a a f m,{k ,k } ,( ) ( )� �im k (m�1) k (m�1) n 1 21 2 ]′ ′k p1 k p11 2
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for , where and is defined in appendix C. Then,i •m p 1, … ,M � 1 f 1,{k ,k } : p p g Fz p {k ,k } a a J( ) ( )n 1 2 i1 i1 1 2 k 1 k 1 im1 2

may be calculated as .K K ip gFn � � f M,{k ,k }( ) ( )i n 1 2k p1 k p11 2

The corresponding backward recursion is

i ′ ′ • ′ ′ i ′ ′b m � 1,{k ,k } p p J p 0Fn p g Fz p {k ,k },n b m,{k ,k }( ) ( ) ( ) ( )n 1 2 im im im 1 2 n 1 2

Kp J p 1Fn( )im
• ′ i ′� p g Fz p {k ,k},n b m,{k ,k} a( ) ( )� im im 1 n 1 km(2 kp1

K

• ′ i ′� p g Fz p {k,k },n b m,{k,k } a( ) ( )� im im 2 n 2 km)
kp1

K K

• i�p J p 2Fn p g Fz p {k ,k } b m,{k ,k } a a ,( ) ( ) ( )� �im im im 1 2 n 1 2 k m k m1 2
k p1 k p11 2

for , and with for all .im p 2, … ,M � 1 b M,{k ,k } : p 1 k ,k( )n 1 2 1 2

To obtain , we use•p z p {k ,k }Fg ,n( )im 1 2 i

• i I i{k (k }1 2p z p {k ,k }Fg ,n ∝ f m,{k ,k } 2 b m,{k ,k } ,( ) ( ) ( )im 1 2 i n 1 2 n 1 2

with the constraint that
K K

•� � p z p {k ,k }Fg ,n p 1 .( )im 1 2 i
k p1 k pk1 2 1

Appendix B

Sampling from p dFg ,n( )i i

Recall that denotes the pair of haplotypes for individual i. Additionally, let denote the ordered paira bd (h ,h ) wi i i i

of cluster-of-origin indicators that correspond to the haplotypes . Thus, and may be thought of asa b(h ,h ) d wi i i i

“phased versions” of and , respectively. To sample from , perform the following.g z p dFg ,n)(i i i i

1. Sample from . This involves sampling the hidden state , conditional on the data and parameters• • •z̃ p z Fg ,n z g( )i i i i i

n, which is a standard procedure for HMMs. First, sample . Then, recursively for• • •z̃ ∼ p z Fg,n ∝ p g,z ,n( ) ( )iM iM iM

, sample from•˜m p M � 1, … ,1 zim

a b• • • • • i • I • •{z (z }im imp z Fz ,g ,n ∝ p g , … ,g ,z Fn p z Fz ,n p f m,z 2 p z r z ,( ) ( ) ( ) ( ) ( )im i(m�1) i i1 im im i(m�1) im n im m�1 im i(m�1)

where is given by equation (9).• •p (z r z )m�1 im i(m�1)

2. Sample from . Since• •˜ ˜w̃ p wFg ,z ,n p p wFz ,n( ) ( )i i i i i i

…˜ ˜ ˜ ˜p wFz ,n p p w Fz ,n p w Fw ,z ,n p w Fw ,z ,n ,( ) ( ) ( ) ( )i i i1 i1 i2 i1 i2 iM i(M�1) iM

each may be sampled sequentially (for ), given and . Given , there are,• •˜ ˜˜ ˜w m p 2, … ,M w z z p {k ,k }im i(m�1) im im 1 2

at most, two possibilities for : and . Thus, probabilities of these outcomes arew (k ,k ) (k ,k )im 1 2 2 1

′ ′ • ′ ′˜p w p (k ,k )Fw p (k ,k ),z p {k ,k },n ∝ p k r k p k r k and( ) ( ) ( )im 1 2 i(m�1) 1 2 im 1 2 m 1 1 m 2 2

′ ′ • ′ ′˜p w p (k ,k )Fw p (k ,k ),z p {k ,k },n ∝ p k r k p k r k .( ) ( ) ( )im 2 1 i(m�1) 1 2 im 1 2 m 1 2 m 2 1

3. Sample from . This is nontrivial only for heterozygous sites—that is, whenM˜ ˜ ˜d p dFw ,g ,v p � p d Fw ,v( ) ( )i i i i im immp1

. Then,g p 1im

a b1�h 1�ha bim ima b a b h him im˜ ˜p d p (h ,h )F(w ,w ) p (k ,k ),g ,v ∝ v 1 � v v 1 � v ,( ) ( ) ( )im im im im im 1 2 im k m k m k m k m1 1 2 2
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for .a b(h ,h ) p (0,1),(1,0)im im

Appendix C

EM Algorithm

Here, we describe an EM algorithm for the estimation of . To do this, we introduce latent variablesn p (a,v,r)
relating to “jumps” that occur in the continuous Markov jump process underlying (see “Local clustering of•zi

haplotypes” in the “Material and Methods” section). Specifically, let denote the number of jumps betweenJim

markers and m for individual i, and let denote the number of these that jump to cluster k. Thusm � 1 Jimk

andK
J : p � Jim imkkp1

�2r dm me , j p 0
�r d �r dm m m m( )p J p jFr p 2 1 � e e , j p 1 .( )im

�r d 2{ m m( )1 � e , j p 2

Now, let be the expected complete-data loglikelihood, . The algorithm is first initiated∗ ∗Q nFn E [log p g,z,JFn Fg]( ) ( )n

with a random guess . Then, the following is repeated for :(0)n c p 1, … ,C

(c�1) (c)n p argmax Q nFn ,( )
n

for sufficiently large C. The maximization above is accomplished by finding solutions to ,∗[�Q(nFn )] / [�v ] p 0km

, and , for all and ( is not defined). This leads∗ ∗[�Q(nFn )] / [�a ] p 0 [�Q(nFn )] / [�r ] p 0 k p 1, … ,K m p 1, … ,M rkm m 1

to the following estimators for n:

∗ ∗ I{g p1}im( )v 1 � v ′km k m
′• ′ ∗ I{k pk}�� I p z p {k,k }Fg ,n 2( ){g (0} im i( )∗ ∗ ∗ ∗im′i k ( ) ( )v 1 � v �v 1 � v′ ′km k m k m km

v̂ p , (C1)km ′• ′ ∗ I{k pk}��p z p {k,k }Fg ,n 2( )im i′i k

�E J Fg∗[ ]n imk
i

â p , (C2)km ��E J Fg∗ ′[ ]n imk′i k

and

[ ]��E J Fg∗n imk
i k� log 1 �( )2n

r̂ p . (C3)m dm

In practice, it would be inefficient to calculate using equation (C3) only to exponentiate it as in equation (4).r̂
In fact, when using the model of (7) or (11) in which is estimated separately in each marker interval,r 1 �(m

could be replaced by a single parameter and estimated with�r dm me )

� � E [J Fg]∗n imki k
.

2n

However, writing it as above (eq. [C3]) facilitates construction of EM algorithms for the constrained model in
which all are equal.rm
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Finally, we give expressions for terms necessary in calculating equations (C1–C3). Note that depends•p z Fg,n( )im

only on the data for individual i:

• i {k (k } i1 2p z p {k ,k }Fg,n ∝ f m,{k ,k } 2 b m,{k ,k } ,( ) ( ) ( )im 1 2 n 1 2 n 1 2

with K K •� � p z p {k ,k }Fg,n p 1 .( )im 1 2k p1 k pk1 2 1

To calculate , we use , which reduces to2
E [J Fg] � j # p J p jFg ,n( )n imk imk ijp0

K K
akm i ′ ′′E J Fg p p J p 1Fr f m � 1,{k ,k }[ ] ( ) ( )� �n imk im n[′ ′′k p1 k p1p gFn( )i

• ′ i ′�2p J p 2Fr p g Fn a p g Fz p {k,k },v b m,{k,k } .′( ) ( ) ( ) ( )im i(�m�1) k m im im n]
Web Resources
The URLs for data presented herein are as follows:

GERBIL, http://www.cs.tau.ac.il/˜rshamir/gerbil/
HAP Web site, http://research.calit2.net/hap/
HaploBlock, http://bioinfo.cs.technion.ac.il/haploblock/
International HapMap Project, http://www.hapmap.org/
SeattleSNPs, http://pga.gs.washington.edu
Stephens Lab Web site, http://www.stat.washington.edu/stephens/

software.html (for PHASE and fastPHASE software)
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